Wednesday 22 February 2017

Prognose Gewichteter Gleitender Durchschnitt

A Prognoseberechnungsbeispiele A.1 Prognoseberechnungsmethoden Es stehen zwölf Berechnungsmethoden zur Verfügung. Die meisten dieser Methoden bieten eine eingeschränkte Benutzerkontrolle. Beispielsweise könnte das Gewicht, das auf die jüngsten historischen Daten oder den Datumsbereich der in den Berechnungen verwendeten historischen Daten gesetzt wurde, spezifiziert werden. Die folgenden Beispiele zeigen das Berechnungsverfahren für jede der verfügbaren Prognosemethoden bei einem identischen Satz von historischen Daten. Die folgenden Beispiele verwenden dieselben Verkaufsdaten für 2004 und 2005, um eine Verkaufsprognose von 2006 zu erstellen. Zusätzlich zur Prognoserechnung enthält jedes Beispiel eine simulierte Prognose von 2005 für eine dreimonatige Halteperiode (Verarbeitungsoption 19 3), die dann für Prozentsätze der Genauigkeit und der mittleren Absolutabweichung (tatsächlicher Umsatz gegenüber simulierter Prognose) verwendet wird. A.2 Kriterien für die Bewertung der Prognoseleistung Abhängig von der Auswahl der Verarbeitungsoptionen und den in den Verkaufsdaten vorhandenen Trends und Mustern werden einige Prognosemethoden für einen gegebenen historischen Datensatz besser abschneiden als andere. Eine für ein Produkt geeignete Prognosemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Es ist auch unwahrscheinlich, dass eine Prognosemethode, die in einem Stadium des Produktlebenszyklus gute Ergebnisse liefert, über den gesamten Lebenszyklus hinweg angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten. Diese sind mittlere absolute Abweichung (MAD) und Prozent der Genauigkeit (POA). Beide dieser Leistungsbewertungsverfahren erfordern historische Verkaufsdaten für einen vom Benutzer angegebenen Zeitraum. Dieser Zeitraum wird als Halteperiode oder Perioden am besten geeignet (PBF) bezeichnet. Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche der Prognosemethoden für die nächste Prognoseprojektion verwendet werden sollen. Diese Empfehlung ist spezifisch für jedes Produkt und kann von einer Prognosegeneration zur nächsten wechseln. Die beiden prognostizierten Methoden der Leistungsbewertung werden in den Seiten nach den Beispielen der zwölf Prognosemethoden vorgestellt. A.3 Methode 1 - Festgelegter Prozentsatz über Letztes Jahr Diese Methode multipliziert Umsatzdaten des Vorjahres mit einem benutzerdefinierten Faktor, zum Beispiel 1,10 für eine 10-Erhöhung oder 0,97 für eine 3-Abnahme. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die benutzerdefinierte Anzahl von Zeiträumen für die Bewertung der Prognoseperformance (Verarbeitungsoption 19). A.4.1 Prognoserechnung Berechnung des Umsatzverlaufs für die Berechnung des Wachstumsfaktors (Verarbeitungsoption 2a) 3 in diesem Beispiel. Summe der letzten drei Monate 2005: 114 119 137 370 Summe die gleichen drei Monate für das Vorjahr: 123 139 133 395 Der berechnete Faktor 370395 0,9367 Berechnen Sie die Prognosen: Januar 2005 Umsatz 128 0,9367 119,8036 oder etwa 120 Februar 2005 Umsatz 117 0,9367 109,5939 oder etwa 110 März 2005 Umsatz 115 0,9367 107,7205 oder etwa 108 A.4.2 Simulierte Prognoseberechnung Summe der drei Monate 2005 vor der Halteperiode (Juli, Aug, Sept): 129 140 131 400 Summe die gleichen drei Monate für die Vorjahr: 141 128 118 387 Der berechnete Faktor 400387 1.033591731 Berechnung der simulierten Prognose: Oktober 2004 Umsatz 123 1.033591731 127.13178 November 2004 Umsatz 139 1.033591731 143.66925 Dezember 2004 Umsatz 133 1.033591731 137.4677 A.4.3 Prozentsatz der Genauigkeitsberechnung POA (127.13178 143.66925 137.4677) (127.13178 - 114 143.66925 - 119 137.4677 - 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Methode 3 - Letztes Jahr zu diesem Jahr Diese Methode Kopiert die Verkaufsdaten des Vorjahres auf das nächste Jahr. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der für die Bewertung der Prognoseperformance angegebenen Zeiträume (Verarbeitungsoption 19). A.6.1 Prognoseberechnung Anzahl der Perioden, die in den Durchschnitt einzubeziehen sind (Verarbeitungsoption 4a) 3 in diesem Beispiel Für jeden Monat der Prognose durchschnittlich die letzten drei Monate Daten. Januar Prognose: 114 119 137 370, 370 3 123.333 oder 123. Februar Prognose: 119 137 123 379, 379 3 126.333 oder 126 März Prognose: 137 123 126 379, 386 3 128.667 oder 129 A.6.2 Simulierte Prognose Berechnung Oktober 2005 Umsatz (129 140 131 114 3 128,333 Dezember 2005 Umsatz (131 114 119) 3 121,333 A.6,3 Prozent der Genauigkeitsberechnung (133,333 128,333 121,333) (114 119 137) 100 103,513 A.6.4 Mittelwert Absolut Abweichungsberechnung MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Methode 5 - Lineare Approximation Lineare Approximation berechnet einen Trend basierend auf zwei Verkaufsverlaufsdatenpunkten. Diese beiden Punkte definieren eine gerade Linie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, da Langstreckenvorhersagen durch kleine Änderungen an nur zwei Datenpunkten genutzt werden. Erforderliche Verkaufsgeschichte: Anzahl der in die Regression einzubeziehenden Perioden (Verarbeitungsoption 5a) plus 1 plus Anzahl der Zeiträume für die Bewertung der Prognoseperformance (Verarbeitungsoption 19). A.8.1 Prognoserechnung Anzahl der Perioden, die in die Regression aufzunehmen sind (Verarbeitungsoption 6a) 3 in diesem Beispiel Für jeden Monat der Prognose addieren Sie den Anstieg oder Abfall während der angegebenen Perioden vor der Halteperiode der vorherigen Periode. Durchschnitt der vorangegangenen drei Monate (114 119 137) 3 123.3333 Zusammenfassung der letzten drei Monate mit betrachtetem Gewicht (114 1) (119 2) (137 3) 763 Differenz zwischen den Werten 763 - 123.3333 (1 2 3) 23 Verhältnis ( (1 n) Wert1 Wert2 4 11,5 100,333 146,333 oder 146 Prognose 5 11,5 100,333 157,8333 oder 158 Prognose 6 11,5 100,333 169,333. Vorhersage (1 n) Wert1 Wert2 4 11,5 100,333 146,333 oder 146 Vorhersage 5 11,5 100,333 157,8333 oder 158 Vorhersage 6 11,5 100,333 169,333 Oder 169 A.8.2 Simulierte Prognoseberechnung Oktober 2004 Umsatz: Durchschnitt der vorangegangenen drei Monate (129 140 131) 3 133.3333 Zusammenfassung der letzten drei Monate mit betrachtetem Gewicht (129 1) (140 2) (131 3) 802 Differenz zwischen den (1 2 3) 2 Verhältnis (12 22 32) - 2 3 14 - 12 2 Wert1 DifferenzRatio 22 1 Wert2 Durchschnitt - Wert1 Verhältnis 133,333 - 1 2 131,333 Vorhersage (1 n) Wert1 Wert2 4 1 131,333 135,333 November 2004 Umsatz Durchschnitt der vorangegangenen drei Monate (140 131 114) 3 128,333 Zusammenfassung der letzten drei Monate mit Bezugsgewicht (140 1) (131 2) (114 3) 744 Differenz zwischen den Werten 744 - 128.3333 (1 2 3) -25.9999 Wert1 DifferenzRatio -25.99992 -12.9999 Wert2 Durchschnitt - Wert1 Verhältnis 128.3333 - (-12.9999) 2 154.3333 Prognose 4 -12.9999 154.3333 102.3333 Dezember 2004 Umsatz Durchschnitt der letzten drei Monate (131 114 119) 3 121.3333 Zusammenfassung der letzten drei Monate mit Gewichtung (119 3) 716 Differenz zwischen den Werten 716 - 121,3333 (1 2 3) -11,9999 Wert1 DifferenzRatio -11,99992 -5,9999 Wert2 Mittelwert-Wert1 Verhältnis 121,3333 - (-5,9999) 2 133,333 Prognose 4 (- (135,33 - 114 102,33 - 119 109,33 - 137) 3 21,88 A.9 Verfahren 7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, - Second Degree Approximation Die lineare Regression ermittelt Werte für a und b in der Prognoseformel Y a bX mit dem Ziel, eine Gerade an die Verkaufsgeschichtsdaten anzupassen. Zweite Grad Approximation ist ähnlich. Dieses Verfahren ermittelt jedoch Werte für a, b und c in der Prognoseformel Y a bX cX2 mit dem Ziel, eine Kurve an die Verkaufsverlaufsdaten anzupassen. Dieses Verfahren kann nützlich sein, wenn sich ein Produkt im Übergang zwischen den Stufen eines Lebenszyklus befindet. Wenn sich beispielsweise ein neues Produkt von der Einführung in die Wachstumsstadien bewegt, kann sich die Umsatzentwicklung beschleunigen. Wegen des Termes der zweiten Ordnung kann die Prognose schnell an die Unendlichkeit heranreichen oder auf Null fallen (abhängig davon, ob der Koeffizient c positiv oder negativ ist). Daher ist dieses Verfahren nur kurzfristig nutzbar. Prognosedaten: Die Formeln finden a, b und c, um eine Kurve auf genau drei Punkte zu platzieren. Sie geben n in der Verarbeitungsoption 7a an, die Anzahl der Zeitperioden der Daten, die sich in jedem der drei Punkte ansammeln. In diesem Beispiel n 3. Daher werden die tatsächlichen Verkaufsdaten für April bis Juni in den ersten Punkt Q1 zusammengefasst. Juli bis September zusammen, um Q2 zu schaffen, und Oktober bis Dezember Summe bis Q3. Die Kurve wird an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume für die Bewertung der Prognoseperformance (PBF) erforderlich. Anzahl der einzubeziehenden Perioden (Verarbeitungsoption 7a) 3 in diesem Beispiel Die vorherigen (3 n) Monate in dreimonatigen Blöcken verwenden: Q1 (Apr - Jun) 125 122 137 384 Q2 (Jul - Sep) 129 140 131 400 Q3 Der nächste Schritt besteht darin, die drei Koeffizienten a, b und c zu berechnen, die in der Prognoseformel Y a bX cX2 (1) Q1 a bX cX2 (mit X 1) abc (2) Q2 verwendet werden (1) aus Gleichung (2) subtrahieren Sie die Gleichung (1) aus der Gleichung (1) aus der Gleichung (2) (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Setzen Sie diese Gleichungen für a und b in die Gleichung (3) ein Gleichung (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Das Zweite-Grad-Approximationsverfahren berechnet a, b und c wie folgt: a Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370 - 400) (X2) X2: (322 340 - 368) 3 2943 98 für den Zeitraum April bis Juni (X5): (3) 322 425 - 575) 3 57.333 oder 57 pro Zeitraum Juli bis September Prognose (X6): (322 510 - 828) 3 1,33 oder 1 pro Zeitraum Oktober bis Dezember (X7) (322 595 - 11273 -70 A.9.2 Simulierte Prognoseberechnung Oktober, November und Dezember 2004 Umsatz: Q1 (Jan - März) 360 Q2 (Apr - Jun) 384 Q3 (Jul - Sep) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) ) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Prozent der Genauigkeitsberechnung POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Mean Absolute Abweichungsberechnung MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Methode 8 - Flexible Methode Die flexible Methode (Prozentsatz über n Monate vor) ähnelt der Methode 1, Prozent über dem letzten Jahr. Beide Verfahren multiplizieren Verkaufsdaten aus einer vorherigen Zeitspanne mit einem vom Benutzer spezifizierten Faktor und projizieren dieses Ergebnis dann in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum des Vorjahres. Das Flexible-Verfahren fügt die Möglichkeit hinzu, einen Zeitraum anzugeben, der nicht derselbe Zeitraum ist, der als Basis für die Berechnungen verwendet wird. Multiplikationsfaktor. Geben Sie z. B. 1.15 in der Verarbeitungsoption 8b an, um die vorherigen Verkaufsverlaufsdaten um 15. Basisperiode zu erhöhen. Zum Beispiel führt n 3 dazu, dass die erste Prognose im Oktober 2005 auf Verkaufsdaten basiert. Minimale Umsatzhistorie: Die vom Benutzer angegebene Anzahl von Perioden zurück zur Basisperiode plus die Anzahl der Zeitperioden, die für die Bewertung der Prognoseperformance erforderlich sind ( PBF). A.10.4 Mittlere Absolutabweichung MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Methode 9 - Gewichteter gleitender Durchschnitt Die Methode des gewichteten gleitenden Durchschnitts (WMA) ist ähnlich wie Methode 4, Gleitender Durchschnitt (MA). Mit dem Weighted Moving Average können Sie jedoch den historischen Daten ungleiche Gewichte zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurzfristige kommen. Neuere Daten sind in der Regel ein größeres Gewicht als ältere Daten zugeordnet, so dass dies WMA mehr reagiert auf Verschiebungen in der Ebene des Umsatzes. Prognosevorhersage und systematische Fehler treten jedoch immer noch auf, wenn die Produktverkäufe Geschichte starke Trend - oder saisonale Muster aufweisen. Diese Methode ist besser für Kurzstreckenvorhersagen von reifen Produkten besser geeignet als für Produkte in den Wachstums - oder Obsoleszenzphasen des Lebenszyklus. N die Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie z. B. n 3 in der Verarbeitungsoption 9a an, um die letzten drei Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Es resultiert in einer stabilen Prognose, aber es wird nur langsam sein, Veränderungen im Umsatzniveau zu erkennen. Andererseits reagiert ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen des Umsatzniveaus, doch kann die Prognose so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Das Gewicht, das jeder der historischen Datenperioden zugewiesen ist. Die zugeordneten Gewichte müssen insgesamt 1,00 betragen. Zum Beispiel, wenn n 3, Gewichte von 0,6, 0,3 und 0,1 zuweisen, wobei die neuesten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (PBF) erforderlich sind. MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Methode 10 - Lineare Glättung Diese Methode ähnelt Methode 9, Weighted Moving Average (WMA). Jedoch wird anstelle der willkürlichen Zuweisung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichtungen zuzuweisen, die linear abnehmen und auf 1,00 summieren. Das Verfahren berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurze Zeit zu gelangen. Wie bei allen linearen gleitenden durchschnittlichen Prognosemethoden treten Prognosevorhersage und systematische Fehler auf, wenn die Produktverkaufsgeschichte starke Trend - oder saisonale Muster aufweist. Diese Methode ist besser für Kurzstreckenvorhersagen von reifen Produkten besser geeignet als für Produkte in den Wachstums - oder Obsoleszenzphasen des Lebenszyklus. N die Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Dies ist in der Verarbeitungsoption 10a spezifiziert. Geben Sie beispielsweise n 3 in der Verarbeitungsoption 10b an, um die letzten drei Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Das System vergibt automatisch die Gewichte der historischen Daten, die linear sinken und auf 1,00 sinken. Wenn beispielsweise n & sub3; wird das System Gewichte von 0,5, 0,3333 und 0,1 zuweisen, wobei die neuesten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (PBF) erforderlich sind. A.12.1 Prognoseberechnung Anzahl der Perioden, die in den Glättungsdurchschnitt einzubeziehen sind (Verarbeitungsoption 10a) 3 in diesem Beispiel Verhältnis für eine Periode vorher 3 (n2 n) 2 3 (32 3) 2 36 0.5 Verhältnis für zwei Perioden vor 2 (n2 n ) 2 2 (32 3) 2 26 0,333 .. Verhältnis für drei Perioden vorher 1 (n2 n) 2 1 (32 3) 2 16 0,1666 .. Januar Prognose: 137 0,5 119 13 114 16 127,16 oder 127 Februar Prognose: 127 0,5 137 13 119 16 129 März-Prognose: 129 0,5 127 13 137 16 129,666 oder 130 A.12.2 Simulierte Prognoseberechnung Oktober 2004 Umsatz 129 16 140 26 131 36 133,6666 November 2004 Umsatz 140 16 131 26 114 36 124 Dezember 2004 Umsatz 131 16 114 26 119 36 119,333 A.12.3 Prozentsatz der Genauigkeitsberechnung POA (133,6666 124 119,333) (114 119 137) 100 101,891 A.12.4 Mittlere Absolutabweichungsberechnung MAD (133,6666 - 114 124 - 119 119,333 - 137) 3 14,1111 A.13 Methode 11 - Exponentielle Glättung Diese Methode ist ähnlich wie Methode 10, Lineare Glättung. In der Linearglättung vergibt das System Gewichte an die historischen Daten, die linear abnehmen. Bei exponentieller Glättung weist das System Gewichte auf, die exponentiell zerfallen. Die exponentielle Glättungsvorhersagegleichung lautet: Prognose a (Vorherige Ist-Verkäufe) (1 - a) Vorhergehende Prognose Die Prognose ist ein gewichteter Durchschnitt der tatsächlichen Umsätze der Vorperiode und der Prognose der Vorperiode. A ist das Gewicht auf den tatsächlichen Umsatz für die vorherige Periode angewendet. (1 - a) das auf die Prognose der Vorperiode angewandte Gewicht. Gültige Werte für einen Bereich von 0 bis 1 und üblicherweise zwischen 0,1 und 0,4 liegen. Die Summe der Gewichte beträgt 1,00. A (1 - a) 1 Sie sollten einen Wert für die Glättungskonstante zuweisen, a. Wenn Sie keine Werte für die Glättungskonstante zuordnen, berechnet das System einen angenommenen Wert auf der Grundlage der in der Verarbeitungsoption 11a angegebenen Anzahl von Perioden der Verkaufsgeschichte. Eine Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für das allgemeine Niveau oder die Grße der Verkäufe verwendet wird. Gültige Werte für einen Bereich von 0 bis 1. n der Bereich der Verkaufsgeschichtsdaten, der in die Berechnungen aufzunehmen ist. Generell reicht ein Jahr der Umsatzverlaufsdaten aus, um das allgemeine Umsatzniveau abzuschätzen. Für dieses Beispiel wurde ein kleiner Wert für n (n 3) gewählt, um die manuellen Berechnungen zur Verifizierung der Ergebnisse zu reduzieren. Eine exponentielle Glättung kann eine Prognose erzeugen, die auf nur einem historischen Datenpunkt basiert. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (PBF) erforderlich sind. A.13.1 Prognoseberechnung Die Anzahl der Perioden, die in den Glättungsdurchschnitt (Verarbeitungsoption 11a) 3 und alpha-Faktor (Verarbeitungsoption 11b) einzubeziehen sind, ist in diesem Beispiel ein Faktor für die ältesten Vertriebsdaten 2 (11) oder 1 bei der Angabe von alpha Ein Faktor für die zweitältesten Verkaufsdaten 2 (12) oder alpha, wenn alpha ein Faktor für die 3. ältesten Verkaufsdaten 2 (13) angegeben ist, oder alpha, wenn alpha ein Faktor für die letzten Verkaufsdaten 2 (1n) , Oder alpha, wenn alpha angegeben ist November Sm. Durchschn. A (Oktober-Ist) (1 - a) Oktober Sm. Durchschn. 1 114 0 0 114 Dezember Sm. Durchschn. A (November-Ist) (1 - a) November Sm. Durchschn. 23 119 13 114 117.3333 Januar Vorhersage a (Dezember Tatsächlich) (1 - a) Dezember Sm. Durchschn. 24 137 24 117.3333 127.16665 oder 127 Februar Prognose Januar Prognose 127 März Prognose Januar Prognose 127 A.13.2 Simulierte Prognoseberechnung Juli 2004 Sm. Durchschn. 22 129 129 August Sm. Durchschn. 23 140 13 129 136,333 September Sm. Durchschn. 24 131 24 136.3333 133.6666 Oktober 2004 Verkauf Sep Sm. Durchschn. 133.6666 August 2004. Sm. Durchschn. 22 140 140 September Sm. Durchschn. 23 131 13 140 134 Oktober Sm. Durchschn. 24 114 24 134 124 November 2004 Verkauf Sep Sm. Durchschn. 124 September 2004 Sm. Durchschn. 22 131 131 Oktober Sm. Durchschn. 23 114 13 131 119,6666 November Sm. Durchschn. 24 119 24 119,6666 119,333 Dezember 2004 Umsatz Sep Sm. Durchschn. 119,3333 A.13.3 Prozent der Genauigkeit Berechnung POA (133,6666 119,3333 124) (114 119 137) 100 101,891 A.13.4 absolute Abweichung Berechnung MAD Mittelwert (133,6666 - 114 124 - 119 119.3333 - 137) 3 14,1111 A.14 Methode 12 - exponentielle Glättung Mit Trend und Saisonalität Diese Methode ist ähnlich wie Methode 11, Exponentialglättung, indem ein geglätteter Durchschnitt berechnet wird. Das Verfahren 12 enthält jedoch auch einen Term in der Prognose-Gleichung, um einen geglätteten Trend zu berechnen. Die Prognose setzt sich aus einem geglätteten Durchschnitt und einem linearen Trend zusammen. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch saisonbedingt angepasst. Eine Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für das allgemeine Niveau oder die Grße der Verkäufe verwendet wird. Gültige Werte für den Alpha-Bereich von 0 bis 1. b die Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für die Trendkomponente der Prognose verwendet wird. Gültige Werte für Beta reichen von 0 bis 1. Ob ein saisonaler Index auf die Prognose a und b angewendet wird, sind unabhängig voneinander. Sie müssen nicht zu 1.0 hinzufügen. Mindestens erforderlicher Umsatzverlauf: zwei Jahre plus Anzahl der für die Bewertung der Prognoseperformance (PBF) erforderlichen Zeiträume. Methode 12 verwendet zwei exponentielle Glättung Gleichungen und ein einfacher Durchschnitt eine geglättete Mittelwert zu berechnen, um einen geglätteten Trend, und ein einfacher Durchschnitt saisonale Faktor. A.14.1 Prognose Berechnung A) Ein exponentiell geglätteten Durchschnitt MAD (122,81 bis 114 133,14 bis 119 135,33 bis 137) 3 8.2 A.15 die Prognosen auswerten Sie Prognoseverfahren auswählen können so viele wie zwölf Prognosen für jedes Produkt zu erzeugen. Jede Prognose-Methode wird wahrscheinlich eine etwas andere Projektion. Wenn Tausende von Produkten prognostiziert werden, ist es unpraktisch, eine subjektive Entscheidung zu treffen, welche der Prognosen in Ihren Plänen für jedes der Produkte verwendet werden. Das System wertet die Leistung automatisch für jede der von Ihnen ausgewählten Prognosemethoden und für jede der Prognoseprognosen aus. Sie können zwischen zwei Leistungskriterien, Mean Absolute Deviation (MAD) und Percent of Accuracy (POA) wählen. MAD ist ein Maß für den Prognosefehler. POA ist ein Maß für die Vorhersage. Beide dieser Leistungsbewertungsverfahren erfordern tatsächliche Verkaufsgeschichtsdaten für eine vom Benutzer angegebene Zeitspanne. Diese Periode der jüngsten Geschichte wird als Halteperiode oder Perioden am besten geeignet (PBF) bezeichnet. Um die Leistung einer Prognosemethode zu messen, verwenden Sie die Prognoseformeln, um eine Prognose für die historische Halteperiode zu simulieren. Normalerweise gibt es Unterschiede zwischen den tatsächlichen Verkaufsdaten und der simulierten Prognose für die Halteperiode. Wenn mehrere Prognosemethoden ausgewählt werden, erfolgt dieser Prozess für jede Methode. Mehrere Prognosen werden für die Halteperiode berechnet und mit dem bekannten Umsatzverlauf für denselben Zeitraum verglichen. Für die Verwendung in Ihren Plänen wird die Prognosemethode empfohlen, die die optimale Übereinstimmung zwischen der Prognose und dem tatsächlichen Umsatz während des Haltezeitraums liefert. Diese Empfehlung ist spezifisch für jedes Produkt und kann sich von einer Prognosegeneration zur nächsten ändern. MAD A.16 mittlere absolute Abweichung (MAD) ist der Mittelwert (oder durchschnittlich) der Absolutwerte (oder Größe) der Abweichungen (oder Fehler) zwischen dem tatsächlichen und Prognosedaten. MAD ist ein Maß für die durchschnittliche Größe der zu erwartenden Fehler bei einer Prognosemethode und einem Datenverlauf. Da bei der Berechnung absolute Werte verwendet werden, werden positive Fehler nicht negativ ausgewertet. Beim Vergleich mehrerer Prognosemethoden hat sich diejenige mit dem kleinsten MAD als die zuverlässigste für dieses Produkt für diese Halteperiode erwiesen. Wenn die Prognose unvoreingenommen ist und Fehler normal verteilt sind, gibt es eine einfache mathematische Beziehung zwischen MAD und zwei weitere gemeinsame Maßnahmen der Verteilung, Standardabweichung und mittlere quadratische Fehler: A.16.1 Prozent der Genauigkeit (POA) Prozent der Genauigkeit (POA) ist Ein Maß für die Vorhersage Bias. Wenn die Prognosen konsequent zu hoch sind, sammeln sich die Vorräte an und die Lagerhaltungskosten steigen. Wenn die Prognosen konsequent zwei niedrig sind, werden die Vorräte verbraucht und der Kundendienst sinkt. Eine Prognose, die 10 Einheiten zu niedrig ist, dann 8 Einheiten zu hoch, dann 2 Einheiten zu hoch, wäre eine unvoreingenommene Prognose. Der positive Fehler von 10 wird durch negative Fehler von 8 und 2. Fehler Actual abgebrochen - Prognose Wenn ein Produkt kann im Inventar gespeichert werden, und wenn die Prognose unvoreingenommen ist, eine kleine Menge an Sicherheitsbestand kann verwendet werden, um die Fehler zu puffern. In dieser Situation ist es nicht so wichtig, Prognosefehler zu eliminieren, da es sich um die Erzeugung von unvorhersehbaren Prognosen handelt. In der Dienstleistungsbranche wäre die obige Situation jedoch als drei Fehler zu betrachten. Der Dienst würde in der ersten Periode unterbesetzt sein, dann überbesetzt für die nächsten zwei Perioden. In Services ist die Größenordnung der Prognosefehler in der Regel wichtiger als die prognostizierte Bias. Die Summierung über die Halteperiode erlaubt positive Fehler, negative Fehler abzubrechen. Wenn die Summe der tatsächlichen Verkäufe die Summe der prognostizierten Verkäufe übersteigt, ist das Verhältnis größer als 100. Natürlich ist es unmöglich, mehr als 100 genau zu sein. Wenn eine Prognose nicht vorliegt, beträgt das POA-Verhältnis 100. Daher ist es wünschenswerter, genauer als 100 genau zu sein, als 110 genau zu sein. Die POA-Kriterien wählen die Prognosemethode, die ein POA-Verhältnis am nächsten zu 100 hat. Scripting auf dieser Seite verbessert die Inhaltsnavigation, ändert jedoch den Inhalt in keiner Weise. FORSCHUNG Die Prognose beinhaltet die Erzeugung einer Zahl, eines Satzes von Zahlen oder eines Szenarios Entspricht einem zukünftigen Ereignis. Es ist absolut notwendig, kurz-und langfristige Planung. Definitionsgemäß basiert eine Prognose auf vergangenen Daten, im Gegensatz zu einer Prognose, die subjektiv ist und auf Instinkt, Bauchgefühl basiert oder erraten wird. Zum Beispiel die Abendnachrichten gibt das Wetter x0022forecastx0022 nicht das Wetter x0022prediction. x0022 Unabhängig davon werden die Begriffe Vorhersage und Vorhersage oft interchangeably verwendet. Beispielsweise definieren Definitionen der regressionx2014a-Technik, die manchmal in der Prognose x2014 verwendet werden, generell, dass ihr Ziel darin besteht, zu erklären oder x0022predict. x0022 Die Prognose basiert auf einer Reihe von Annahmen: Die Vergangenheit wird sich wiederholen. Mit anderen Worten, was in der Vergangenheit passiert ist, wird in der Zukunft wieder passieren. Wenn sich der Prognosehorizont verkürzt, steigt die Prognosegenauigkeit. Zum Beispiel wird eine Prognose für morgen genauer sein als eine Prognose für den nächsten Monat eine Prognose für nächsten Monat wird genauer sein als eine Prognose für das nächste Jahr und eine Prognose für das nächste Jahr wird genauer sein als eine Prognose für zehn Jahre in der Zukunft. Die Prognose in der Summe ist genauer als die Prognose einzelner Posten. Das bedeutet, dass ein Unternehmen die gesamte Nachfrage über sein gesamtes Produktspektrum prognostizieren kann, als es in der Lage ist, einzelne Lagerhaltungseinheiten (SKUs) zu prognostizieren. Zum Beispiel kann General Motors genauer prognostizieren die Gesamtzahl der Autos für das nächste Jahr benötigt als die Gesamtzahl der weißen Chevrolet Impalas mit einem bestimmten Optionspaket. Prognosen sind selten genau. Darüber hinaus sind die Prognosen fast nie völlig korrekt. Während einige sehr nah sind, sind wenige x0022reight auf dem money. x0022 Daher ist es ratsam, eine Prognose anzubieten x0022range. x0022 Wenn man eine Nachfrage von 100.000 Einheiten für den nächsten Monat prognostizieren würde, ist es extrem unwahrscheinlich, dass die Nachfrage 100.000 entsprechen würde genau. Allerdings würde eine Prognose von 90.000 bis 110.000 ein viel größeres Ziel für die Planung zur Verfügung stellen. William J. Stevenson listet eine Reihe von Merkmalen, die für eine gute Prognose gemeinsam sind: Accuratex2014some Genauigkeitsgrad sollte ermittelt und angegeben werden, so dass Vergleiche auf alternative Prognosen vorgenommen werden können. Reliablex2014die Prognosemethode sollte konsistent eine gute Prognose liefern, wenn der Benutzer ein gewisses Maß an Vertrauen festlegen soll. Timelyx2014a eine gewisse Zeit benötigt wird, um auf die Prognose reagieren, so dass der Prognose-Horizont muss die Zeit notwendig, um Änderungen vorzunehmen. Einfach zu bedienen und verstehenx2014users der Prognose muss sicher sein und komfortabel mit ihm zu arbeiten. Kosten-effektiv x2014die Kosten der Herstellung der Prognose sollten nicht überwiegen die Vorteile aus der Prognose erhalten. Prognosetechniken reichen von der einfachen bis zur extrem komplexen. Diese Techniken werden in der Regel als qualitativ oder quantitativ klassifiziert. QUALITATIVE TECHNIKEN Qualitative Prognosetechniken sind in der Regel subjektiver als ihre quantitativen Pendants. Qualitative Techniken sind nützlicher in den früheren Phasen des Produktlebenszyklus, wenn weniger vergangene Daten existieren für den Einsatz in quantitativen Methoden. Zu den qualitativen Methoden gehören die Delphi-Technik, die Nominal Group Technique (NGT), Außendienstmitarbeit, Stellungnahmen und Marktforschung. DIE DELPHI-TECHNIK. Die Delphi-Technik nutzt eine Expertengruppe, um eine Prognose zu erstellen. Jeder Experte wird gebeten, eine Prognose vorzusehen, die spezifisch für den Bedarf ist. Nachdem die ersten Prognosen gemacht wurden, liest jeder Experte, was jeder andere Experte schreibt und wird natürlich von seinen Ansichten beeinflusst. Eine anschließende Prognose erfolgt dann durch jeden Fachmann. Jeder Experte liest dann wieder, was jeder andere Experte schreibt und wird wiederum von den Wahrnehmungen der anderen beeinflusst. Dieser Vorgang wiederholt sich, bis jeder Experte nähert sich Einverständnis über die erforderlichen Szenario oder Zahlen. NOMINAL GRUPPE TECHNIK. Nominal Group Technique ist ähnlich wie die Delphi-Technik, dass es eine Gruppe von Teilnehmern, in der Regel Experten nutzt. Nachdem die Teilnehmer auf prognoserelevante Fragen antworten, rangieren sie ihre Antworten in der Reihenfolge ihrer wahrgenommenen relativen Bedeutung. Dann werden die Ranglisten gesammelt und aggregiert. Schließlich sollte die Gruppe einen Konsens über die Prioritäten der rangierten Fragen erreichen. SALES FORCE MEINUNGEN. Die Vertriebsmitarbeiter sind oft eine gute Informationsquelle für die zukünftige Nachfrage. Der Vertriebsleiter kann von jedem Vertriebsmitarbeiter Input verlangen und seine Reaktionen in eine Verkaufskraft zusammengesetzte Prognose zusammenfassen. Bei der Verwendung dieser Technik ist Vorsicht geboten, da die Mitglieder des Außendienstes möglicherweise nicht unterscheiden können, was die Kunden sagen und was sie tatsächlich tun. Auch, wenn die Prognosen verwendet werden, um Verkaufsquoten zu errichten, kann die Vertriebsmannschaft versucht werden, niedrigere Schätzungen zur Verfügung zu stellen. EXECUTIVE MEINUNGEN. Manchmal treffen Führungskräfte auf höherer Ebene zusammen und entwickeln Prognosen basierend auf ihrem Wissen über ihre Verantwortungsbereiche. Dies wird manchmal als eine Jury von Executive Stellungnahme bezeichnet. MARKTFORSCHUNG. In der Marktforschung werden Verbrauchererhebungen zur Ermittlung der potenziellen Nachfrage eingesetzt. Solche Marketing-Forschung beinhaltet in der Regel den Bau eines Fragebogens, der persönliche, demografische, wirtschaftliche und Marketing-Informationen verlangt. Gelegentlich sammeln Marktforscher diese Informationen persönlich an den Einzelhändlern und in den Einkaufszentren, in denen der Verbraucher experiencex2014taste, das Gefühl, den Geruch und das seex2014a bestimmte Produkt erfahren kann. Der Forscher muss darauf achten, dass die Stichprobe der befragten Personen repräsentativ für das gewünschte Ziel ist. QUANTITATIVE TECHNIKEN Quantitative Prognosetechniken sind in der Regel objektiver als ihre qualitativen Pendants. Quantitative Prognosen können Zeitreihenprognosen (d. H. Eine Projektion der Vergangenheit in die Zukunft) oder Prognosen auf der Grundlage assoziativer Modelle (d. h. basierend auf einer oder mehreren erklärenden Variablen) sein. Zeitreihen-Daten können unterliegende Verhaltensweisen haben, die vom Prognostiker identifiziert werden müssen. Darüber hinaus kann die Prognose möglicherweise die Ursachen des Verhaltens zu identifizieren. Einige dieser Verhaltensweisen können Muster oder einfach zufällige Variationen sein. Zu den Mustern gehören: Trends, die langfristige Bewegungen (nach oben oder unten) in den Daten sind. Saisonalität, die kurzfristige Schwankungen erzeugt, die in der Regel mit der Zeit des Jahres, des Monats oder sogar eines bestimmten Tages zusammenhängen, wie zum Beispiel der Einzelhandel am Weihnachtsmarkt oder die Spikes im Bankgeschäft am ersten und am Freitag. Zyklen, die wellenartige Schwankungen von mehr als einem Jahr, die in der Regel an wirtschaftliche oder politische Bedingungen gebunden sind. Unregelmäßige Variationen, die kein typisches Verhalten widerspiegeln, wie z. B. eine extreme Wetterperiode oder ein Gewerkschaftsschlag. Zufällige Variationen, die alle nicht-typischen Verhaltensweisen umfassen, die nicht von den anderen Klassifikationen berücksichtigt werden. Unter den Zeitreihenmodellen ist die einfachste die naxEFve-Prognose. Eine naxEFve-Prognose verwendet einfach die tatsächliche Nachfrage für die vergangene Periode als die prognostizierte Nachfrage für die nächste Periode. Dies setzt natürlich voraus, dass sich die Vergangenheit wiederholt. Es geht auch davon aus, dass alle Trends, Saisonalität oder Zyklen entweder in der vorherigen Periode entsprechen oder nicht existieren. Ein Beispiel für die naxEFve-Prognose ist in Tabelle 1 dargestellt. Tabelle 1 NaxEFve Prognose Eine weitere einfache Technik ist die Verwendung der Mittelung. Um eine Prognose über die Mittelung zu machen, nimmt man einfach den Durchschnitt aus einer Anzahl von Perioden von vergangenen Daten, indem jede Periode summiert und das Ergebnis durch die Anzahl der Perioden dividiert wird. Diese Technik hat sich als sehr effektiv für die Nahbereichsprognose erwiesen. Variationen des Mittelwerts umfassen den gleitenden Durchschnitt, den gewichteten Durchschnitt und den gewichteten gleitenden Durchschnitt. Ein gleitender Durchschnitt nimmt eine vorbestimmte Anzahl von Perioden, summiert seine tatsächliche Nachfrage und teilt sich durch die Anzahl von Perioden, um eine Prognose zu erreichen. Für jede nachfolgende Periode fällt die älteste Datenperiode ab und die letzte Periode wird hinzugefügt. Unter der Annahme eines dreimonatigen Gleitendurchschnitts und der Verwendung der Daten aus Tabelle 1 würde man einfach 45 (Januar), 60 (Februar) und 72 (März) addieren und durch drei dividieren, um zu einer Prognose für April 45 60 72 177 zu kommen X00F7 3 59 Um eine Prognose für Mai zu erreichen, würde man die Nachfrage von Januarx0027 aus der Gleichung fallen lassen und die Nachfrage von April an hinzufügen. Tabelle 2 zeigt ein Beispiel für eine dreimonatige gleitende Durchschnittsprognose. Tabelle 2 Drei Monate bewegliche durchschnittliche Prognose Aktuelle Nachfrage (000x0027s) Ein gewichteter Durchschnitt wendet ein vorbestimmtes Gewicht auf jeden Monat der vergangenen Daten an, summiert die vergangenen Daten aus jeder Periode und dividiert durch die Summe der Gewichte. Wenn der Prognostiker die Gewichte so einstellt, dass ihre Summe gleich 1 ist, dann werden die Gewichte mit dem tatsächlichen Bedarf jedes anwendbaren Zeitraums multipliziert. Die Ergebnisse werden dann summiert, um eine gewichtete Prognose zu erreichen. Im Allgemeinen gilt, je jünger die Daten, je höher das Gewicht, und je älter die Daten, desto kleiner das Gewicht. Unter Verwendung des Bedarfsbeispiels wird ein gewichteter Durchschnitt unter Verwendung von Gewichten von 0,4. 3,2 und 0,1 die Prognose für Juni: 60 (.1) 72 (.2) 58 (.3) 40 (.4) 53.8 Prognosen können auch eine Kombination der gewogenen durchschnittlichen und gleitenden Durchschnittsprognosen verwenden . Eine gewichtete gleitende Durchschnittsprognose weist Gewichte einer vorbestimmten Anzahl von Perioden tatsächlicher Daten zu und berechnet die Prognose auf die gleiche Weise wie oben beschrieben. Wie bei allen sich bewegenden Prognosen, wenn jede neue Periode hinzugefügt wird, werden die Daten aus der ältesten Periode verworfen. Tabelle 3 zeigt eine dreimonatige gewichtete gleitende Durchschnittsprognose unter Verwendung der Gewichte .5. 3 und .2. Eine komplexere Form des gewichteten gleitenden Mittelwertes ist eine exponentielle Glättung, die so genannt wird, weil das Gewicht exponentiell abfällt, wenn die Daten altern. Tabelle 3 Dreix2013Month Gewichtete gleitende Durchschnittsprognose Aktuelle Nachfrage (000x0027s) Die exponentielle Glättung nimmt die vorherige Periode x0027s voraus und passt sie durch eine vorgegebene Glättungskonstante an, wobei x03AC (alpha genannt wird, wobei der Wert für alpha kleiner als eins ist) multipliziert mit der Differenz der vorherigen Prognose und der Nachfrage, die tatsächlich während des vorher prognostizierten Zeitraums aufgetreten ist Prognosefehler). Die exponentielle Glättung wird wie folgt formuliert: Neue Prognose vorherige Prognose alpha (tatsächliche Nachfrage x2212 vorherige Prognose) FF x03AC (A x2212 F) Die exponentielle Glättung erfordert, dass der Prognostiker die Prognose in einer vergangenen Periode startet und auf den Zeitraum vorbereitet, für den ein Strom vorliegt Prognose erforderlich ist. Eine beträchtliche Menge an vergangenen Daten und eine Anfangs - oder erste Prognose sind ebenfalls notwendig. Die ursprüngliche Prognose kann eine tatsächliche Prognose aus einem früheren Zeitraum, die tatsächliche Nachfrage aus einer früheren Periode, oder sie kann durch Mittelung aller oder eines Teils der vergangenen Daten geschätzt werden. Einige Heuristiken existieren für die Berechnung einer ersten Prognose. Zum Beispiel würde die Heuristik N (2 xF7 x03AC) x2212 1 und ein Alpha von 0,5 ein N von 3 ergeben, was anzeigt, dass der Benutzer die ersten drei Perioden von Daten abfragen würde, um eine erste Prognose zu erhalten. Jedoch ist die Genauigkeit der Anfangsprognose nicht kritisch, wenn man große Datenmengen verwendet, da die exponentielle Glättung x0022 selbstkorrigierend ist. X0022 Wenn genügend Perioden von vergangenen Daten vorhanden sind, wird die exponentielle Glättung schließlich genügend Korrekturen durchführen, um eine vernünftig ungenaue Initialisierung zu kompensieren Prognose. Unter Verwendung der in anderen Beispielen verwendeten Daten, einer anfänglichen Prognose von 50 und einer Alpha von 0,7 wird eine Prognose für Februar als solche berechnet: Neue Prognose (Februar) 50 .7 (45 × 2212 50) 41.5 Die Prognose für März : Neue Prognose (März) 41.5 .7 (60 x2212 41.5) 54.45 Dieser Vorgang wird fortgesetzt, bis der Prognostiker den gewünschten Zeitraum erreicht hat. In Tabelle 4 wäre dies für den Monat Juni, da die tatsächliche Nachfrage für Juni nicht bekannt ist. Ist-Nachfrage (000x0027s) Eine Erweiterung der exponentiellen Glättung kann verwendet werden, wenn Zeitreihen-Daten einen linearen Trend aufweisen. Diese Methode ist durch mehrere Namen bekannt: doppelte Glättung Trend-adjustierte exponentielle Glättungsprognose einschließlich Trend (FIT) und Holtx0027s Modell. Ohne Anpassung werden einfache exponentielle Glättungsergebnisse dem Trend zuwiderlaufen, dh die Prognose wird immer niedrig sein, wenn der Trend steigt oder hoch, wenn der Trend abnimmt. Bei diesem Modell gibt es zwei Glättungskonstanten, x03AC und x03B2, wobei x03B2 die Trendkomponente darstellt. Eine Erweiterung des Holtx0027s-Modells, genannt Holt-Winterx0027s-Methode, berücksichtigt sowohl Trend - als auch Saisonalität. Es gibt zwei Versionen, multiplikativ und additiv, wobei das multiplikative das am meisten verwendete ist. In dem additiven Modell wird die Saisonalität als eine Menge ausgedrückt, die dem Serienmittel hinzugefügt oder davon subtrahiert werden soll. Das multiplikative Modell drückt die Saisonalität als Prozentsatz aus, der als saisonale Verwandte oder saisonale Indizes des durchschnittlichen (oder Trendes) bezeichnet wird. Diese werden dann multipliziert mit Zeitwerten, um Saisonalität zu berücksichtigen. Ein relativer Wert von 0,8 würde eine Nachfrage von 80 Prozent des Durchschnitts anzeigen, während 1,10 eine Nachfrage anzeigen würde, die 10 Prozent über dem Durchschnitt liegt. Detaillierte Informationen zu dieser Methode finden Sie in den meisten Operations Management Lehrbüchern oder einer von einer Reihe von Bücher über die Prognose. Assoziative oder kausale Techniken beinhalten die Identifikation von Variablen, die verwendet werden können, um eine andere Variable von Interesse vorherzusagen. Zum Beispiel können die Zinssätze verwendet werden, um die Nachfrage nach Hause Refinanzierung prognostizieren. Typischerweise beinhaltet dies die Verwendung einer linearen Regression, wobei das Ziel darin besteht, eine Gleichung zu entwickeln, die die Wirkungen der Prädiktor (unabhängigen) Variablen auf die prognostizierte (abhängige) Variable zusammenfasst. Wenn die Prädiktorvariable aufgetragen wurde, wäre das Ziel, eine Gleichung einer Geraden zu erhalten, die die Summe der quadrierten Abweichungen von der Linie minimiert (wobei die Abweichung der Abstand von jedem Punkt zur Linie ist). Die Gleichung lautet: ya bx, wobei y die vorhergesagte (abhängige) Variable ist, x die Prädiktor - (unabhängige) Variable, b die Steigung der Linie und a gleich der Höhe der Linie an der y - abfangen. Sobald die Gleichung bestimmt ist, kann der Benutzer aktuelle Werte für die Prädiktor (unabhängige) Variable einfügen, um zu einer Prognose (abhängige Variable) zu gelangen. Wenn es mehr als eine Prädiktorvariable gibt oder wenn die Beziehung zwischen Prädiktor und Prognose nicht linear ist, wird eine einfache lineare Regression nicht ausreichend sein. Für Situationen mit mehreren Prädiktoren sollte eine multiple Regression angewendet werden, während nicht-lineare Beziehungen die Verwendung einer krummlinigen Regression verlangen. ÖKONOMETRISCHE FORECASTING Ökonometrische Methoden, wie das autoregressive integrierte Moving Average Model (ARIMA), verwenden komplexe mathematische Gleichungen, um frühere Beziehungen zwischen Nachfrage und Variablen zu zeigen, die die Nachfrage beeinflussen. Eine Gleichung wird abgeleitet und dann getestet und fein abgestimmt, um sicherzustellen, dass es so zuverlässig wie möglich eine Darstellung der Vergangenheitsbeziehung ist. Sobald dies geschieht, werden die projizierten Werte der Einflussgrößen (Einkommen, Preise usw.) in die Gleichung eingefügt, um eine Prognose zu erstellen. AUSWERTUNG VON PROGNOSEN Die Vorhersagegenauigkeit kann durch Berechnung der Vorspannung, der mittleren absoluten Abweichung (MAD), des mittleren quadratischen Fehlers (MSE) oder des mittleren absoluten prozentualen Fehlers (MAPE) für die Prognose unter Verwendung von verschiedenen Werten für alpha bestimmt werden. Bias ist die Summe der Prognosefehler x2211 (FE). Für die obige Exponentialglättung wäre die berechnete Vorspannung: (60 × 2212 41,5) (72 × 2212 54,45) (58 × 2212 66,74) (40 × 2212 60,62) 6,69 Wenn man annimmt, dass eine niedrige Vorspannung einen insgesamt niedrigen Prognosefehler anzeigt, Berechnen Sie die Vorspannung für eine Anzahl von potentiellen Werten von alpha und nehmen Sie an, dass diejenige mit der niedrigsten Bias die genaueste wäre. Allerdings ist darauf zu achten, dass ungenaue Wetterprognosen zu einem niedrigen Bias führen können, wenn sie sowohl über Prognose als auch unter Prognosen (negativ und positiv) liegen. Zum Beispiel kann über drei Perioden eine Firma einen bestimmten Wert von Alpha verwenden, um eine Prognose von 75.000 Einheiten (x221275.000) unter einer Prognose von 100.000 Einheiten (100.000) zu erstellen und dann über 25.000 Einheiten (x221225.000) prognostiziert zu haben Eine Vorspannung von null (x221275.000 100.000 x2212 25.000 0). Im Vergleich dazu würde ein weiteres Alpha, das über Prognosen von 2.000 Einheiten, 1.000 Einheiten und 3.000 Einheiten resultiert, zu einer Vorspannung von 5.000 Einheiten führen. Wenn die normale Nachfrage 100.000 Einheiten pro Periode betrug, würde das erste Alpha Prognosen liefern, die um bis zu 100 Prozent ausgeschaltet wären, während das zweite Alpha um maximal 3 Prozent ausgeschaltet wäre, obwohl die Vorspannung in der ersten Prognose Null war. Ein sichereres Maß für die Prognosegenauigkeit ist die mittlere absolute Abweichung (MAD). Um den MAD zu berechnen, summiert der Prognostiker den Absolutwert der Prognosefehler und dividiert dann durch die Anzahl der Prognosen (x2211 FE x00F7 N). Durch die Berücksichtigung des Absolutwerts der Prognosefehler wird die Verrechnung von positiven und negativen Werten vermieden. Dies bedeutet, dass sowohl eine Überprognose von 50 als auch eine Unterprognose von 50 um 50 ausgeschaltet sind. Unter Verwendung der Daten aus dem exponentiellen Glättungsbeispiel kann MAD wie folgt berechnet werden: (60 · 2212 41,5 72 · 2212 54,45 58 · 2212 66,74 40 · 2212 60,62) X00F7 4 16.35 Demzufolge liegt der Prognose durchschnittlich bei 16,35 Einheiten pro Prognose. Im Vergleich zum Ergebnis anderer Alphas wird der Prognostiker wissen, dass das Alpha mit dem niedrigsten MAD die genaueste Prognose liefert. Der mittlere quadratische Fehler (MSE) kann ebenfalls auf dieselbe Weise verwendet werden. MSE ist die Summe der Prognosefehler quadriert dividiert durch N-1 (x2211 (FE)) x00F7 (N-1). Das Quadrieren der Prognosefehler eliminiert die Möglichkeit, negative Zahlen auszugleichen, da keines der Ergebnisse negativ sein kann. Unter Verwendung der gleichen Daten wie oben würde das MSE sein: (18.5) (17.55) (x22128.74) (x221220.62) x00F7 3 383.94 Wie bei MAD kann der Prognostiker die MSE von Prognosen vergleichen, die unter Verwendung verschiedener Werte von & alpha; Dass das Alpha mit dem niedrigsten MSE die genaueste Prognose ergibt. Der mittlere absolute Prozentfehler (MAPE) ist der durchschnittliche absolute Prozentfehler. Um zu dem MAPE zu gelangen, muss man die Summe der Verhältnisse zwischen Prognosefehler und Ist-Bedarf mal 100 (um den Prozentsatz zu erhalten) und dividieren durch N (x2211 Ist-Bedarf x2212 Prognose x00F7 Ist-Bedarf) xD7 100 x00F7 N. Mit den Daten von Kann das exponentielle Glättungsbeispiel MAPE wie folgt berechnet werden: (18.560 17.5572 8.7458 20.6248) xD7 100 x00F7 4 28.33 Wie bei MAD und MSE gilt, je niedriger der relative Fehler, desto genauer die Prognose. Es sollte angemerkt werden, dass in einigen Fällen die Fähigkeit der Prognose, sich schnell auf Veränderungen in den Datenmustern zu ändern, als wichtiger als die Genauigkeit angesehen wird. Daher sollte die Auswahl der Prognosemethode die relative Ausgewogenheit von Wichtigkeit zwischen Genauigkeit und Ansprechempfindlichkeit widerspiegeln, wie vom Prognostiker bestimmt. HERSTELLUNG EINES VORHABENS William J. Stevenson listet die folgenden grundlegenden Schritte im Prognoseprozess auf: Bestimmen Sie den prognostizierten Zweck. Faktoren wie, wie und wann die Prognose verwendet wird, bestimmen den Genauigkeitsgrad und die gewünschte Detaillierungsstufe. Sie bestimmen die Kosten (Zeit, Geld, Mitarbeiter), die der Prognose und der Art der zu verwendenden Prognosemethode zugeordnet werden können . Stellen Sie einen Zeithorizont fest. Dies geschieht, nachdem man den Zweck der Prognose bestimmt hat. Längerfristige Prognosen erfordern längere Zeithorizonte und umgekehrt. Genauigkeit ist wieder eine Überlegung. Wählen Sie eine Prognosetechnik. Die gewählte Technik hängt von dem Zweck der Prognose, dem gewünschten Zeithorizont und den zulässigen Kosten ab. Daten erfassen und analysieren. Die Menge und Art der benötigten Daten wird durch den Prognosezweck, die gewählte Prognosemethode und alle Kostenüberlegungen bestimmt. Machen Sie die Prognose. Überwachen Sie die Prognose. Bewerten Sie die Leistung der Prognose und ändern, wenn nötig. WEITERES LESEN: Finch, Byron J. Operations Now: Rentabilität, Prozesse, Leistung. 2 ed. Boston: McGraw-Hill Irwin, 2006. Grün, William H. Ökonometrische Analyse. 5 ed. Upper Saddle River, NJ: Prentice Hall, 2003. Joppe, Dr. Marion. X0022The Nominal Group Technique. x0022 Der Forschungsprozess. Erhältlich bei x003C ryerson. ca Stevenson, William J. Operations Management. 8 ed. Boston: McGraw-Hill Irwin, 2005. Lesen Sie auch Artikel über die Prognose von WikipediaWeighted Moving Average Forecasting Methoden: Vor-und Nachteile Hallo, LIEBE Ihre Post. Ich frage mich, ob Sie weiter ausarbeiten könnte. Wir verwenden SAP. In ihm gibt es eine Auswahl, die Sie wählen können, bevor Sie Ihre Prognose ausführen, die Initialisierung genannt wird. Wenn Sie diese Option aktivieren, erhalten Sie ein Prognoseergebnis, wenn Sie die Prognose erneut im gleichen Zeitraum ausführen und die Initialisierung nicht auf die Ergebnisänderung überprüfen. Ich kann nicht herausfinden, was diese Initialisierung tut. Ich meine, mathematisch. Welches Prognoseergebnis am besten zu speichern und zu nutzen ist. Die Änderungen zwischen den beiden sind nicht in der prognostizierten Menge, sondern in der MAD und Fehler, Sicherheitsbestand und ROP-Mengen. Nicht sicher, ob Sie SAP verwenden. Hallo danke für die erklärung so effeciently seine zu gd. Thanks again Jaspreet Hinterlasse eine Antwort Antworten abbrechen Beliebte Beiträge Über Shmula Pete Abilla ist der Gründer von Shmula und der Charakter, Kanban Cody. Er hat Unternehmen wie Amazon, Zappos, eBay, Backcountry und andere helfen, Kosten zu senken und die Kundenerfahrung zu verbessern. Er tut dies durch eine systematische Methode zur Identifizierung von Schmerzen, die Auswirkungen auf den Kunden und das Geschäft, und fördert eine breite Beteiligung der Mitarbeiter des Unternehmens, um ihre eigenen Prozesse zu verbessern. Diese Website ist eine Sammlung seiner Erfahrungen, die er mit Ihnen teilen möchte. Erste Schritte mit kostenlosen Downloads


No comments:

Post a Comment